Methylcobalamin (MB12) Protocol
Dr. James Neubrander, MD

Important Information: Methylcobalamin (“MB12”) Injection Instructions
Injections should be made from 25mg/ml Methylcobalamin, PRESERVATIVE-FREE FORM ONLY!
Starting dose typically 64.5mcg/kg every 3rd day subcutaneously (buttocks). Make sure to request
3/10cc insulin syringes called “shorts”.

Key Points Underlying Success or Failure:

a) All types of fat are not equal and different types of fats have different dissolution and dispersion constants. From my
studies, the fat from the region of the buttocks significantly outperforms the results of injections made into the fat of the arms,
legs, or belly.

b) Because my clinical research indicates the methyl-B12 phenomenon is due to a dependency condition, not a defi-
ciency syndrome, subcutaneous injections into the fat of the buttocks allows for a leaching effect that can provide a
“24/7” slow release into the tissues. By contrast, injections into muscle quickly saturate B12 receptors, correct any deficiency
that may be occurring, and temporarily treat any dependency that is also present. After the B12 receptors are saturated, the
excess methyl-B12 not bound to receptors will be filtered from the blood by the kidneys and excreted into the urine within 30-45
minutes after the injection.

If the volume of the red methyl-B12 shot is large enough, the next urine specimen will be red or it will be some color of red
depending on the concentration of the urine. If, however, the volume of the red methyl-B12 shot is small, the urine will not
show red or pink even though the methyl-B12 is filtered through the kidney into the urine within the same 30-45 minutes after
being injected. Unfortunately the effects of intramuscular injections are quite confusing to parents and clinicians. Many children
will show a response to some degree, often to a very noticeable degree. However, when compared to subcutaneous shots to
the buttocks, the duration of the response is shorter; the intensity of the response, over time, will be less; and because of this
combination of factors, many parents will discontinue shots months prematurely before realizing the full effect of methyl-B12 for
their child. A couple of additional points must be made about intramuscular injections.

Should you give your child a shot and see a response within minutes or a couple hours instead of many hours to days, you are
giving the injections intramuscularly. Subcutaneous adipose tissue in the buttocks is not vascular enough to deliver enough
methyl-B12 fast enough to produce a significant clinical response in such a short period of time. If my dosing schedule is being
followed and you see that the urine is pink or red, the methyl-B12 shot was undoubtedly delivered into the muscle no matter
how much you believe the injection was given subcutaneously. Subcutaneous injections cannot deliver enough “red” methyl-
B12 fast enough to be cleared by the kidney and show red in the urine unless the volumes are huge, significantly greater than
any that I commonly use.

c) Because of the above discussions, a constant steady state can be achieved in most individuals with a shot frequency
being adequate once every three days if fat from the child’s buttocks is used. I use the following example, not to be gross
or disgusting, but rather because it allows you to easily visualize and remember the concept.
Key Points Underlying Success or Failure:

To visualize what happens to a methyl-B12 shot in the fat in the buttocks may be hard to do unless we “magnify it”. Therefore, let’s think about an “elephant’s butt” instead. Let’s say there are 12 inches of fat between the skin and the muscle below. Our goal is to insert a red lollipop right in the middle of this foot of elephant butt fat – 6 inches under the skin and 6 inches above the muscle. Because fat is moist and because lollipops dissolve whenever they come in contact with moisture, imagine the diameter of the lollipop gradually getting smaller and smaller until it is totally gone 3 days later. This is analogous to injecting a dense concentration of methyl-B12 into the subcutaneous fat in a child’s buttocks – a process of slow steady release over 3 days. By contrast let’s revisit the elephant’s butt and insert the lollipop in the muscle. Because muscle has lymph and blood constantly in motion, the lollipop continually has blood and lymph “washing over it” and the lollipop will dissolve much more quickly, similar to what would happen if it were in a bowl of water that was gently being rocked back and forth. As this illustration shows, the lollipop in the bowl will be completely melted within an hour. Should the lollipop have been inserted right at or very close to the subcutaneous/muscular junction, an effect somewhere in between the two extremes would be noted.

d) Clinically speaking, methyl-B12 injections, when truly delivered into fatty tissue in the buttocks, appear to disperse over a 3-day period “on average”. Therefore, the first place you need to look when the benefits of a methyl-B12 shot seems to wear off too soon is to retry the shots at the same dose and frequency but make the angle of attack much more severe, much closer to the horizontal plane, just under the skin. In children that are extremely thin or extremely young that have essentially no fatty tissue on their buttocks, I have found that injections given every day or every-other-day, still just under the skin, seem to overcome the problem and allow the benefits of methyl-B12 to be seen. However, I do not keep the dose the same. Instead I make the dose of each shot proportionately less depending on whether it is given every other day or every day.

For example, a dose of 750 mcg per shot every 3 days is equivalent to a shot of 500 mcg given every other day and equivalent to a shot of 250 mcg given daily.

e) Common errors in technique:
 a. Pinching the fat: Professionals often teach parents to “pinch the fat” to give a subcutaneous injection. Unfortunately with small children, the “tenting effect” that occurs not only brings with it subcutaneous fatty tissue but also “a ribbon of muscle” that is just as likely, if not more likely to receive the medication that is thought to be being administered into the subcutaneous tissue. The discussion above has already shown that in my clinical experience intramuscular injections are significantly inferior to those received in the fat in the buttocks. Therefore, NEVER PINCH THE FAT to insure a subcutaneous injection. Instead, go as shallow as necessary, often just under the skin in order to deliver the methyl-B12 into subcutaneous tissue.

 b. Angle of injection too vertical: As discussed above in detail, the angle of injection may not be severe enough in young children who have very little fat to deal with in order to hit fatty tissue and not muscle. Therefore, the thinner the child, the more closely the angle of the shot should be to the horizontal than the vertical plane as it enters the skin. At times you may need to inject just under the surface of the skin to accomplish this goal.

f) Safety issues:
 a. The safety of the shots is unquestioned if administered from a BD #328438 needle. This needle is only 8 mm in length and when the shot is given at a 30 degree or less, as is the technique taught, the “effective length” is only a small fraction of the original 8 mm length.
Key Points Underlying Success or Failure:

b. Clinicians have always taught patients to use the upper outer quadrant of the buttocks to avoid injury to the sciatic nerve that could be reached if a regular sized needle was used in the lower portion of the buttocks. However, with the BD #328438 extremely short needle length of 8 mm, even if injected “straight in” over the area of the sciatic nerve, the chances of hitting it in anyone except the smallest preemie is impossible. With the angle of injection being anything significant, it is impossible to hit the sciatic nerve.

c. By applying simple trigonometry, one of the professionals whose child is a patient of mine gave me this “rule of thumb” if a BD #328438 needle is used as per my protocol: a) shots injected at a 30 degree angle give an effective needle length of approximately 4 mm; b) shots injected at a 20 degree angle give an effective needle length of approximately 2.7 mm; c) shots injected at a 10 degree angle give an effective needle length of approximately 1.4 mm.

Special Consideration Regarding The Local Anesthetic You Have Purchased:

Do This Before Administering Your First Shot.

Parents are able to obtain different types of local anesthetic creams from different compounding pharmacies as prescribed by different clinicians. Clinicians “have their favorites”. Some are commercially available and are standardized as to effectiveness. Those produced by different compound pharmacies can have different percentages of ingredients and different combination of ingredients. Therefore, some local anesthetics will act more quickly and/or wear off more quickly. What I suggest for all my patients is that they put the cream on the sensitive portion of their inner thighs and take a pin and make a chart as to how soon they do not feel pain from the pinprick and how long it takes before they feel it again. With such a chart, the parents can know with confidence how long they should wait before they give the shot and how much time they have before the local anesthetic will no longer be active.

A Couple Things That May Cause You Concern

Occasionally I receive calls from parents concerned about a bluish or reddish discoloration under the skin and they are worried that this is a bad thing, that they have hurt their child, or that the dark spot will be permanent. The explanation for this is as follows: Methyl-B12 is a deep red color. Everyone knows that blood is red. When blood is viewed “through skin” it has a bluish tone. The shallower the angle of the needle, the more likely one is to at least see the color of the medicine. Occasionally the needle punctures a very small capillary and a tiny drop of blood extrudes into the surrounding tissue. The “blue blood” plus the “red methyl-B12” plus the child’s “individual skin tone” will produce some type of dark discoloration. It is harmless and unlikely to repeat itself for the majority of shots unless the shots are always being given at the most extreme angle, almost horizontal in nature. When this happens, most of the discoloration seen is that of the medicine and not the occasional nick of a capillary. It should be noted that this small capillary bleed occurs with the same frequency when shots are given deeper. The only difference is that you can’t see it. Therefore the old saying, “Out of sight, out of mind” definitely applies to this situation.

Occasionally a child will feel a shot administered perfectly if no local anesthetic was used. The reason for this is because all of us have tiny nerve fibrils that are so small that no one can predict where these fibrils will be in order to miss them when giving a shot. Therefore, a shot administered quickly and without the cream will typically not be felt. However, occasionally the needle itself or the methyl-B12, because of its pH, will be close enough to a nerve fibril that slight pain will be encountered. This pain is a very brief, fleeting pain and nothing to worry about because on a pain scale of 0-10 [0 = none; 10 = severe], the rating should be no higher than a 1-2 depending on the sensitivity of the child. This type of pain should be gone within 30 to 90 seconds.
Key Points Underlying Success or Failure:

Another possible scenario exists, that being that the shot is so close to these nerve fibrils that the volume of the shot causing a local “stretching” to the nerve fibrils. When nerve fibrils are stretched, mild pain results. This is similar to having a pimple, what I call “the zit effect”. As is well known, as long as a pimple is exerting pressure, there is pain. Once the pimple is popped, the pain goes away. So it is with the zit pressure effect from a shot close to a nerve fibril. This pain may last for a few minutes while the excess fluid causing the stretching is being resorbed into the body tissue. The effect of this problem is more like a 1.5 to 2 on the pain scale.

Still a third possible scenario exists, that being that the shot is so shallow that not only does one have the possibility of being near a subcutaneous nerve fibril, but in addition one is so close to the skin that a small “medicine bubble” pops up. This small bleb is totally safe but the skin has a much greater density of nerve fibrils than one finds in the adipose tissue of the buttocks. Therefore, this problem may occur more often with extremely shallow shots. The effect of this problem is more like a 2 to 3 on the pain scale. Its effect will also last for only a few minutes before the effect resolves.

When pain is prolonged or more than mild, it is usually the result of a pH problem due to a bad batch of methyl-B12 shots. I have discussed this in detail in the section below entitled “Pain – Pain – Pain”. As you will see from our videos, we are not trying to hide anything, nor are we trying to make you believe that life is perfect with the shots and that you will never have anything go wrong. However, the problems are so minor and so infrequent compared to the benefit most parents see that, with few exceptions, parents say that they can live with whatever isn’t perfect while they are getting their child back.

Method 1: (Read this first for the “big picture”; then compare with Method 2)
(Quick; essentially painless; rarely felt by the child at all; and most children never wake up)

IMPORTANT NOTE: Most parents only need to do this until they become comfortable giving their child the shot. Afterwards, they usually find this procedure not necessary.

1. Take a Band-Aid. Fold the edges back onto themselves so you can easily pull the Band-Aid off later without having to “scrape” the edges and awaken your child.
2. Put some EMLA cream on a “meaty spot” of the upper outer quadrant of a buttock just under the diaper or underwear so you can gently slide it over without later waking your child.
 Note: EMLA cream is difficult to obtain. Other local anesthetic creams are available from your pharmacy with a prescription.
3. Apply the Band-Aid over the area that contains the local anesthetic cream.
4. Mark the edges of the absorbent part of the Band-Aid so that once you remove the Band-Aid, you will have made a target where to insert the needle. You do not want to be off slightly or your child will feel the prick of the needle.
5. Allow the child to go to sleep.
6. The anesthetic cream needs to be in place for approximately 45 minutes to be maximally effective if it is prilocaine/lidocaine. The effect comes on much more quickly, usually within 15 minutes if it is a combination of benzocaine, lidocaine, and tetracaine. The effects of all of them will usually last another hour.
7. Do the following in quick succession. You may want to practice the moves first using an orange or the arm of a sofa that is covered with material (not leather).
 a. Gently pull the Band-Aid off and wipe away the anesthetic cream with an alcohol swab trying not to awaken your child. Be sure that the area and/or the adjacent area has not been soiled with fecal material. Be careful to clean the area thoroughly with alcohol.
 b. Note the “target area”. With your thumb and 3rd finger holding the middle of the syringe (similar to holding a pencil or pen but with different fingers) and your index finger on the plunger of the
tops at the hub of the needle/syringe. (Think of this move as similar to tossing a dart.) This also allows for the injection to go into the subcutaneous fat and because of a “slow-leaching effect” gives better results than if injected into muscle.

c. Immediately inject all of the solution within 1-2 seconds.
d. Quickly withdraw the needle and immediately put it into the “sharps container”. (See “Sharps Container” below)
e. If you do everything gently, your child will usually not awaken. If you do everything quickly and if your child does awaken, you “will be there” to comfort him/her immediately and your child will not know that an injection has occurred.

Method 2: (Easier to do and the preferred method by most parents that continue to use the cream.)

Do everything exactly as above except rather than putting a Band-Aid on, rub the cream into the area where you are going to give the shot. The area will still be numb 45 to 90 minutes later.

Problem, Type #1: Child That Resists Allowing You To Put On The Local Anesthetic Cream But Does Not Awaken Once S/He Falls Asleep: Wait until your child is in a deep sleep. Then apply the anesthetic cream. Wait 45 minutes and then proceed as above.

Problem, Type #2: If Your Child Is A Light Sleeper And Awakens Whenever You Attempt To Give The Shot At Night, Switch And Give The Shots During The Day: I do not recommend alarming a child, scaring a child, or having a child always needing to “guard his butt” from the boogyman that’s always trying to attack him while he’s attempting to rest in peace! Therefore, with these children it is much more important just to teach the child that the shot is a part of life, just as with a diabetic child. I do not recommend a reward system unless it is absolutely the last straw. The shots are as important as insulin to these children and therefore they need to be administered. Therefore it is a learning experience for both the child and the parents how to do this with the least emotional trauma and the least negotiations possible. After the first few shots, the child will learn that they do not hurt (if the creams are used) and will therefore be less resistive or not resistive at all.

Sharps Container:

It is important to make sure that needles are discarded properly. The following description will allow you to make a homemade version of a sharps container.

Please do the following:

1. Obtain a large coffee can that has a plastic lid.
2. Throw out the coffee. Wash and dry the container.
3. Make two slits at a 90-degree angle to each other in the center of the plastic lid.
4. Securely tape the lid to the can.
5. Check to make sure that you can push a syringe through the slits.

For more information about College Pharmacy’s MB12 Injections, please contact us at (800) 888-9358 or via email at inforequest@collegepharmacy.com.

For more information about Dr. James Neubrander, please visit his website at www.drneubrander.com.

Please Note: College Pharmacy will dispense prescription drugs only after having received a valid patient specific prescription. Our compounded formulations are the result of prescriber requests, the purpose of any information that you may receive is to illustrate College Pharmacy compounding capabilities. These statements have not been evaluated by the FDA.

1/2014